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On the effect of a central vortex on a stretched
magnetic flux tube
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Experiments and numerical simulations of fully developed turbulence reveal the
existence of elongated vortices whose length is of the order of the integral scale of
turbulence while the diameter is somewhere between the Kolmogorov scale and the
Taylor microscale. These vortices are embedded in quasi-irrotational background flow
whose straining action counteracts viscous decay and determines their cross-sectional
shape. In the present paper we analyse the effect of a stretched vortex of this
kind on a uni-directional magnetic flux tube aligned with vorticity in an electrically
conducting fluid. When the magnetic Prandtl number is large, Pm & 1, the field is
concentrated in a flux tube which, like the vortex itself, has elliptical cross-section
inclined at 45◦ to the principal axes of strain. We focus on the limit Pm � 1 when
the magnetic flux tube has radial extent much larger than that of the vortex, which
appears like a point vortex as regards its action on the flux tube. We find the
steady-state solution valid in the entire plane outside the vortex core. The solution
shows that the magnetic field has a logarithmic spiral component and no definite
orientation of the inner contours. Such magnetized vortices may be expected to exist
in MHD turbulence with weak magnetic field where the field shows a tendency to
align itself with vorticity. Magnetized vortices may also be expected to exist on the
solar surface near the corners of convection cells where downwelling swirling flow
tends to concentrate the magnetic field.

1. Introduction
Vortex tubes, subjected to the action of a locally uniform straining motion and to

the effect of viscous diffusion, were identified half a century ago (Burgers 1948) as
a key ingredient of turbulent flow. The idea that at least the dissipative scales of
turbulence might be well represented by a random distribution of vortex tubes and/or
sheets was pursued by Townsend (1951) (see Batchelor 1953, §7.4), and has received
much impetus from the frequent detection of concentrated vortices both in direct
numerical simulation (DNS) of turbulence (see, for example, Vincent & Meneguzzi
1991; She, Jackson & Orszag 1990; Jimenez et al. 1993), and in experiments on
turbulence in liquids seeded with small bubbles (Douady, Couder & Brachet 1991;
Cadot, Douady & Couder 1995; Villermaux, Sixou & Gagne 1995). A high-Reynolds-
number asymptotic theory of vortices subjected to the non-axisymmetric strain

U ∗ = (αx∗, βy∗, γz∗) , α+ β + γ = 0 , α 6 β 6 γ (1.1)
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(where an asterisk denotes dimensional variables) has been developed by Moffatt,
Kida & Ohkitani (1994, hereafter referred to as MKO94), and this explains certain
features of the dissipation fields observed in such vortices in DNS (Kida & Ohkitani
1992). A parallel theory of two-dimensional unsteady vortices subjected to two-
dimensional strain (Jiménez, Moffatt & Vasco 1996) explains the structure of the
vortices that emerge in freely decaying two-dimensional turbulence (McWilliams
1984), and provides a new handle on the dynamics of the asymptotic (t → ∞)
high-Reynolds-number evolution.

The success of these approaches encourages an extension of the basic ideas to
magnetohydrodynamic (MHD) turbulence, for which magnetic field B∗, as well as
vorticity ω∗, is subject to the orienting and intensifying effects of any local strain
field. The powerful (though admittedly incomplete) analogy between B∗ and ω∗ in the
turbulence context was first exploited by Batchelor (1950) (see Moffatt 1978, §3.2); the
analogy has been pursued for the problem of stretched ‘vortex/magnetic flux tubes’
or ‘magnetic sinew’ by Bajer (1995) who argues the case for simultaneous alignment
of B∗ and ω∗ along the axis Oz∗ of greatest positive rate of strain. These fields are
subject to different diffusivities – kinematic viscosity ν in the case of vorticity, and
magnetic diffusivity η in the case of magnetic field; this means that for positive strain
rate γ, the viscous and magnetic diffusion length scales δv and δm are different:

δv = (ν/γ)1/2 , δm = (η/γ)1/2 . (1.2)

We shall suppose in the present paper that the magnetic Prandtl number is small:

Pm = ν/η = (δv/δm)2 � 1 (1.3)

and we shall focus attention on the structure of the magnetic field on scales r∗ � δv ,
at which the additional velocity field is essentially that due to a point vortex (see
(1.13) below).

We shall suppose that the circulation associated with this vortex is Γ (> 0), and
that the magnetic flux is Φ(> 0), and that both Γ and Φ are finite. We may then
adopt dimensionless variables

r = r∗/δm , ψ = ψ∗/Γ , ω = ω∗δ2
m/Γ , B = B∗δ2

m/Φ (1.4)

and, under the assumption of aligned fields,

ω = ω(r, θ)ẑ , B = B(r, θ)ẑ , (1.5a , b)

where ẑ is a unit vector in the direction Oz. The vorticity and magnetic induction
equations then reduce in polar coordinates (cf. MKO94) to the similar form

1

r

∂(ψ,ω)

∂(r, θ)
= −εm(L̃0 + λL1)ω , (1.6)

1

r

∂(ψ, B)

∂(r, θ)
= −εm(L0 + λL1)B , (1.7)

where

L0 = 1 + 1
2
r
∂

∂r
+ ∇2 , (1.8a)

L̃0 = 1 + 1
2
r
∂

∂r
+ Pm∇2 , (1.8b)

L1 = ( 1
2

cos 2θ)r
∂

∂r
− ( 1

2
sin 2θ)

∂

∂θ
, (1.8c)
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and

εm = η/Γ , λ =
α− β
α+ β

. (1.9)

The (non-negative) parameter λ is a measure of the non-axisymmetry of the strain
field (1.1); usually we are concerned with the range 0 6 λ < 1; occasionally however
we shall discuss the situation λ > 1 (equivalently β > 0). The parameter εm is the
reciprocal of a magnetic Reynolds number

Rm = ε−1
m = Γ/η . (1.10)

We first present an asymptotic theory for large Rm,

Rm � 1 , i.e. εm � 1 , (1.11)

and then consider the situation when εm increases to values of order unity and greater.
Note that the Lorentz force associated with the magnetic field (1.5b) is irrotational,

and therefore makes no contribution to the vorticity equation (1.6) (although it does
have an effect on the pressure field). This means that (1.6) is the same as in MKO94,
(but with δm instead of δv used for non-dimensionalization). For ε = εmPm � 1, and

for r � P
−1/2
m , the asymptotic solution of (1.6) obtained by MKO94 has the form

ψ(r, θ) = − 1

2π
ln r + C

εmλP
2
m

r2
sin 2θ + O

(
λε2

mP
4
m

r4

)
(1.12)

where C = −17.472 . . .. Hence, provided Pm � 1 as assumed here, we have indeed

ψ(r, θ) ∼ − 1

2π
ln r (r � P 1/2

m ) (1.13)

and (1.7) then becomes

− 1

2πr2

∂B

∂θ
= −εm(L0 + λL1)B . (1.14)

This linear equation, deceptively simple in form, is investigated in the following
sections of the paper. We require a solution which satisfies the (normalized) flux
condition ∫ ∞

0

∫ 2π

0

B(r, θ)rdrdθ = 1, (1.15)

and boundary conditions that B(r, θ) behaves ‘reasonably’ (despite the presence of
the vortex) as r → 0, i.e.

B(r, θ) = O(1) as r → 0 , (1.16)

and that B settles down to the unique (up to a constant b) solution of (1.14) that
obtains in the far field where the effect of the vortex is negligible, i.e.

B(r, θ) ∼ b exp

(
αx∗

2

+ βy∗
2

η

)
= b exp

(
− 1

4
r2(1 + λ cos 2θ)

)
= be−r

2/4
(

1− λ 1
4
r2 cos 2θ + 1

2
λ2
(

1
4
r2
)2

cos2 2θ + . . .
)
. (1.17)

Here, we see the need for the assumption λ < 1 (i.e. β < 0).
The total velocity field with which we are concerned is that due to the uniform strain

(1.1) plus that due to the point vortex (1.13); the dimensionless (r, θ, z) components
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Figure 1. The projections of the streamlines of the flow (1.18) on the (x, y) plane with (a) λ = 0;

(b) λ = 0.3; (c) λ = 0.6; (d) λ = 0.9. The scaled radius is rε
1/2
m .

of this total velocity field are

ur = − 1
2
εmr(1 + λ cos 2θ) , uθ =

1

2πr
+ 1

2
εmλr sin 2θ , uz = εmz . (1.18)

Note that the scale (πεm(1 − λ))−1/2 represents the distance from the origin at which
the vortex and the strain field have comparable intensities. For r � (πεm(1− λ))−1/2,
the vortex dominates, while for r � (πεm(1 − λ))−1/2, the strain dominates. Figure 1
shows the projection of the streamlines of the velocity field (1.18) on any plane
z = const. for various values of λ; note the increasingly strong convergence towards
the axis Oy as λ increases from zero. The scale of the magnetic flux tube is O(1)
in the dimensionless units adopted; hence when εm � 1, the flux tube is confined
to the region where the vortex dominates; this induces a strong ‘axisymmetrization’
of the flux tube as we shall see; nevertheless all departures from axisymmetry are
induced by the strain field and controlled by a complex interaction of strain, vortex
and magnetic diffusion even in the region where r = O(1).

We conclude this introductory section with a plan of the paper. In §2, we recall the
asymptotic high-Rm (or low-εm) theory of Bajer (1995) which is a natural extension of
the approach of MKO94. This predicts elliptic structure for the curves B(r, θ) = const.
with principal axes at 45o inclination to the principal axes of strain (Ox,Oy). The
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asymptotic expansion appears to be valid for r = O(1) but fails for r = O(R
−1/2
m ) and

in particular fails to satisfy the outer boundary condition (1.17). In §3, we seek to
rectify this failing by numerical means. The computed solution does reveal roughly
elliptic contours, but the orientation of these contours shows damped oscillations as
r → 0 which are not present in the asymptotic solution.

This puzzling behaviour is explained in §4 where we develop an expansion in
powers of λ yielding a solution valid uniformly for all r and matching the outer
solution (1.17). The expansion reveals a non-analytic part with spiral level contours
and validates the numerical results of §3. In order to investigate the convergence of
both the asymptotic expansion and the λ-expansion as well as explain the difference
between them we derive a family of series solutions in powers of r. The details are
given in Appendix A. In §5 we summarize the results.

2. Asymptotic theory for Rm � 1
As in MKO94, we may seek an asymptotic solution of (1.14) for εm � 1 in the

form

B = B0 + εmB1 + ε2
mB2 + . . . . (2.1)

At leading order, ∂B0/∂θ = 0, so that B0 = B0(r), and at higher orders

1

2πr2

∂Bn

∂θ
= (L0 + λL1)Bn−1 (n = 1, 2, 3, . . .) . (2.2)

Integrating the n = 1 equation over θ (from zero to 2π) gives the solvability condition

L0B0(r) = 0 (2.3)

with unique solution (satisfying (1.14) and (1.15))

B0(r) = (4π)−1e−r
2/4 . (2.4)

Equation (2.2) (with n = 1) then integrates to give

B1(r, θ) = − 1
16
λr4e−r

2/4 sin 2θ , (2.5)

the arbitrary additive function of r being eliminated by application of the solvability
condition at order ε2

m.
Similarly, we may proceed to higher levels, obtaining successively B2(r, θ), B3(r, θ),

B4(r, θ), . . .; thus we find

B2(r, θ) = −λ̃πr4e−r
2/4
[
2(r2 − 6) cos 2θ + λ̃r2(r2 − 4) cos 4θ

]
, (2.6)

B3(r, θ) = 2λ̃π2r4e−r
2/4
[(

(3r4 − 44r2 + 72) + λ̃2r4(r4 − 28r2 + 80)
)

sin 2θ

+ λ̃r2(2r4 − 29r2 + 44) sin 4θ + 1
3
λ̃2r4(r4 − 12r2 + 16) sin 6θ

]
, (2.7)

B4(r, θ) = λ̃π3r4e−r
2/4
[(

8(3r6 − 78r4 + 388r2 − 216)

+ 4λ̃2r6(5r4 − 225r2 + 2244)
)

cos 2θ

+
(
4λ̃r2(4r6 − 111r4 + 593r2 − 364)

+ 8
3
λ̃3r6(r6 − 48r4 + 496r2 − 832)

)
cos 4θ

+ 4
9
λ̃2r4(9r6 − 243r4 + 1244r2 − 752) cos 6θ

+ 1
3
λ̃3r6(r6 − 24r4 + 112r2 − 64) cos 8θ

]
, (2.8)

and so on. Here λ̃ = λ/16.
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Note that in Bn, the largest power of r is r4n and this appears in conjunction with
a factor λn; thus, for example, for λ = O(1) and r � 1,

B2(r, θ) ∼ −πλ̃2r8e−r
2/4 cos 4θ , (2.9a)

B3(r, θ) ∼ 2
3
π2λ̃3r12e−r

2/4(3 sin 2θ + sin 4θ) , (2.9b)

B4(r, θ) ∼ 1
3
π3λ̃4r16e−r

2/4(8 cos 4θ + cos 8θ) . (2.9c)

The ordering of the terms of (2.1) is thus consistent only if r . Rε where

Rε = O(εmλ)
−1/4 . (2.10)

To order εm, for r = O(1) the contours B0 + εmB1 = const. are ellipses inclined at
an angle 45o to the principal axes of strain. The manner in which these contours
rotate and deform as r increases from O(1) to O(Rε) is not apparent from the above
expansion.

Note finally that the coefficient of terms involving sin 2θ or cos 2θ in (2.5) and (2.6)
are of order r4 for small r, while the coefficient of cos 4θ in (2.6) is of order r6 for
small r. This type of behaviour persists at higher order: the coefficients of terms in
cos 2nθ or sin 2nθ are O(r2(n+1)) for small r.

3. Uniformly valid solution
The above asymptotic solution has to be regarded at best as an inner solution

which must be matched in some way to a solution that satisfies the outer boundary
condition (1.17). Let us seek a solution in the form of a Fourier series

B(r, θ) =

∞∑
n=−∞

bn(r)e
i2nθ, (3.1)

where, for reality of B,

b−n(r) = b∗n(r) , (3.2)

the star now representing the complex conjugate. Only terms proportional to ei2nθ

occur in (3.1) from the structure of equation (1.14). Substitution in this equation
yields a set of coupled linear differential equations:

b′′n +

(
1

r
+ 1

2
r

)
b′n +

(
1− 4n2

r2

)
bn + 1

2
λ [(n+ 1)bn+1 − (n− 1)bn−1]

= − 1
4
λr
(
b′n−1 + b′n+1

)
+

in

πεmr2
bn (n = 0,±1,±2, . . .). (3.3)

We must apply boundary conditions for this set of equations for both r → 0 and
r → ∞. Noting the comment at the end of §2, the appropriate conditions for r → 0
are evidently

b0(r) ∼ (4π)−1 , bn(r) ∼ r2(n+1) (n > 1) as r → 0 . (3.4)

For r →∞, the Fourier coefficients are given from (1.17) by

bn(r) ∼
b

2π

∫ 2π

0

e−r
2(1+λ cos 2θ)/4e−i2nθdθ

= 2(−1)nb e−r
2/4In(

1
4
λr2), (3.5)

where In(ξ) is a modified Bessel function (Gradshtein & Ryzhik 1994) whose asymp-
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totic behaviour for n fixed and ξ →∞ is

In(ξ) ∼ (2πξ)−1/2eξ . (3.6)

Hence, for fixed n,

bn(r) ∼
23/2(−1)nb e−r

2/4

(2πλr2)1/2
eλr

2/4 =

(
8

πλ

)1/2

(−1)nbr−1e−(1−λ)r2/4. (3.7)

Therefore, when r is large all Fourier coefficients have the same magnitude for n up
to about 1

4
λr2, beyond which a different asymptotic behaviour of In becomes valid

and |bn| decreases with n.
In order to solve (3.3) numerically we must impose the boundary condition (3.5)

at some finite radius r = R. The asymptotic behaviour of bn(r) shows that the larger
we choose R the bigger the number of Fourier modes we have to take into account.
However, we must not choose R too small. It must be in the region where the strain
dominates and (1.17) is valid, which means R & L = (πεm(1−λ))−1/2 (cf. 1.18). Taking
R = L we can estimate the number of Fourier modes needed:

N ≈ 1
4
λL2 = λ [4π(1− λ)εm]−1 . (3.8)

We solve numerically equations (3.3) using the deferred correction technique (NAG
routine D02 GBF) forN = 20 modes with the condition (3.4) imposed at r = r0 = 10−5

and (3.5) at r = R = 10.
The resulting contours of B and the corresponding contours of the (non-dimen-

sional) ohmic dissipation,

Dm =
1

2

(
∂Bi

∂xj
− ∂Bj

∂xi

)(
∂Bi

∂xj
− ∂Bj

∂xi

)
, (3.9)

are plotted in figures 2–4.
They do not depend on the precise values of r0, R or N. The contours of B have

a maximum at the origin and for smaller values of εm, e.g. εm = 0.01 and εm = 0.05,
they seem to be elliptical with 45◦ inclination, as predicted by the expansion (2.1);
farther out they rotate back towards the axes of strain to match the outer solution
(1.17).

The contours of the ohmic dissipation Dm show similar change of orientation, but
are strongly dipolar with a minimum at the origin (this minimum is to be expected
because the current associated with a field given by (3.1) and (3.4) is zero at r = 0).
The line joining the maxima of Dm is inclined to the axis of weaker strain at an
angle α(εm). For small εm the angle α(εm) is close to 45◦ and the contours approach
those obtained from the expansion (2.1) (cf. Bajer 1995). For larger values of εm, i.e.
εm = 0.1 and εm = 1.0, they do not seem to have the diagonal orientation.

The asymptotic behaviour bn ∼ r2(n+1) as r → 0 implies that the shape of the inner
contours is determined by

b0(r) + 2bR1 (r) cos 2θ − 2bI1(r) sin 2θ ≈ const , (3.10)

where the superscripts denote the real and imaginary parts. The expansion (2.1)
predicts (see (2.5) and (2.6))

b0(r) = 1
4
π−1

(
1− 1

4
r2 + 1

32
r4 . . .

)
, (3.11a)

bR1 (r) = 3
8
λε2

mπr
4 + O(ε4

m), (3.11b)

bI1(r) = 1
32
λεmr

4 + O(ε3
m), (3.11c)
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Figure 2. Contours of the magnetic field B (left column) and of the ohmic dissipation Dm (right
column) with λ = 0.5 and (a) εm = 1.0; (b) εm = 0.1; (c) εm = 0.05; (d) εm = 0.01.

and so, since |bI1| � |bR1 | as r → 0, the inner contours have elliptical shape inclined at
45◦ to the principal axes of strain.

In figure 5 we show a scaled logarithmic plot of 2bR1 as obtained from a numerical
solution. When εm is smaller than a certain threshold value ε0 somewhere between
0.01 and 0.02 the function 2bR1 (r)/r4 oscillates, but converges to 3

8
λε2

mπ as r → 0
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Figure 3. Contours of the magnetic field B (left column) and of the ohmic dissipation Dm (right
column) with λ = 0.7 and (a) εm = 1.0; (b) εm = 0.1; (c) εm = 0.05; (d) εm = 0.01.

(figure 5a). However, when εm > ε0 the function bR1 (r) looks very different. It seems
to have an infinite number of zeros accumulating at r = 0 (figure 5b). The magnitude
of bR1 (r) decreases like rp, but the computed value of p (when εm = 0.02) appears to
be p = 3.19 . . . instead of p = 4 as in (3.11).

This gives rise to an apparent inconsistency. The computed solution shows different
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Figure 4. Contours of the magnetic field B (left column) and of the ohmic dissipation Dm (right
column) with λ = 0.9 and (a) εm = 1.0; (b) εm = 0.1; (c) εm = 0.05; (d) εm = 0.01.

small-r behaviour from what we assumed (conditions (3.4)) when calculating it. We
have tried different boundary conditions at r0, for example bn(r0) = 0, and find the
same oscillatory behaviour with the same phase, amplitude and value of p. Changing
the value of r0 we find that the boundary condition affects the solution only in a
small neighbourhood of r0. Hence the oscillations seen in figure 5(b) are not related
to the conditions adopted at r0.
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Figure 5. 2b1(r)/rp versus ln r from a numerical solution of (3.3)–(3.5) (solid line) and from the
expansion in powers of λ (dashed line) (see §4) with N = 10, λ = 0.7 and (a) p = 4, εm = 0.01; (b)
p = 3.19, εm = 0.02.

We cannot decide a priori on the grounds of the numerical solution alone whether
the oscillatory behaviour is or is not a result of truncation of the system (3.3).
Truncating at n = 1 we obtain two coupled linear equations for b0 and b1 which can
be manipulated to give a single fifth-order equation for b0 (see Appendix A),

w4b′′′′′0 + (3w4 + 6w3)b′′′′0 + [(K + 2)w4 + 16w3 + 5w2]b′′′0
+[Kw4 + (5K + 9)w3 + 12w2 − w]b′′0 + [(3K + 1)w3 + (3K + 6)w2 − 2w + 1 + σ2]b′0
+[2w2 − w + 1 + σ2]b0 = 0, (3.12)

where K = 1− 1
2
λ2, w = 1

4
r2 is a new variable and

σ = (4πεm)−1 . (3.13)

From any solution b0(r) we can easily calculate the corresponding b1(r) satisfying the
truncated system. There are two solutions finite at r = 0:

b1
0(w) = 1− w + 1

2
w2 − 1

6

[
1 +

3λ2

9 + σ2

]
w3 + O(w4), (3.14a)

b1
1(w) =

1
2
λ

3− iσ
w2 + O(w3); (3.14b)

b2
0 = wδ [1 + O(w)] , (3.14c)

b2
1 = − 1

2
λwδ−1

[
1

δ
− 1

2δ − 1
w + O(w2)

]
; (3.14d)

where δ = 1 + (1 + iσ)1/2. The general solution of (3.12) finite at r = 0 is a linear
combination of these two solutions, so the behaviour of b1(r) as r → 0 depends on the
value of δ. When δR−1 < 2, which corresponds to εm > ε0 = (16π

√
3)−1 = 0.01148 . . . ,

we have

b1(r) ∼ r2(δ−1) = r2(δR−1) cos(2δI ln r + φ0), (3.15)

φ0 being an arbitrary phase. This is the behaviour observed in figure 5(b). Note
that when εm = 0.02, 2(δR − 1) ≈ 3.1945 . . . , very near the value 3.19 obtained in the
computation. However, we do not know the asymptotic behaviour of these solutions
for r → ∞. The numerical results alone cannot rule out the possibility that these
solutions are physically unacceptable as r →∞. If they decrease rapidly with r it may
be necessary to impose the outer boundary condition at very large r = R in order to
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filter out the unphysical solutions, i.e. those which do not satisfy (1.17). As explained
earlier, this requires a prohibitively large number of Fourier modes.

We show in Appendix A that there are in fact no solutions of (3.12) which satisfy
(3.7). This could suggest that the oscillatory behaviour is purely the result of truncation
and might disappear when the unphysical solutions are properly filtered out. However,
in §4 we develop an expansion in powers of λ which yields a spatially uniform solution
and explains the oscillatory behaviour. It has a non-analytic component which is not
captured by the asymptotic theory of §2. Near the origin this part vanishes in the limit
εm → 0, but as εm increases it becomes more prominent and causes the oscillatory
behaviour of the non-axisymmetric Fourier modes, just as seen in figure 5(b).

4. Expansion in powers of λ

Let us first rewrite (1.14) in the new coordinates w = 1
4
r2, θ̂ = 2θ:

σ

w

∂B

∂θ̂
= [L0 + λL1]B, (4.1)

where now

L0 = 1 + w
∂

∂w
+ w

(
∂2

∂w2
+

1

w

∂

∂w
+

1

w2

∂2

∂θ̂2

)
, (4.2a)

L1 = cos θ̂w
∂

∂w
− sin θ̂

∂

∂θ̂
. (4.2b)

When λ = 0 the Burgers solution takes a particularly simple form:

B0 = e−w, (4.3)

where, in order to simplify the notation, we now take the total non-dimensional flux
to be Φ = 4π. With λ = 0 the equation (4.1) also has a family of non-axisymmetric
solutions given by

BN(w, θ̂) = wβNe−weiNθ̂/2FN(w), βN = 1
2
N(1 + 2iσ/N)1/2 , (4.4)

where N = 1, 2, 3, . . . , and the FN are Kummer functions satisfying (Abramovitz &
Stegun 1965, §13.1)

wF ′′N + (2βN + 1− w)F ′N − βNFN = 0. (4.5)

These generalize the solutions obtained by Galloway & Zheligovsky (1994) for the
pure flux tube problem without a central vortex (i.e. with σ = 0). The solutions (4.4)
have the following asymptotic behaviour:

BN(w, θ̂) ∼ eiNθwβN as w → 0, (4.6a)

BN(w, θ̂) ∼ eiNθw−1 as w →∞. (4.6b)

The complex power of w in (4.6a) means that the level contours near the origin
are logarithmic spirals (see figure 6a in Appendix A). The solutions are linearly
independent and have finite magnetic energy, but |BN | is not integrable. They have
sectors of infinite magnetic flux and cannot be the asymptotic states of the time-
dependent problem with finite initial flux. However, Galloway & Zheligovsky (1994)
point out that solutions of this kind can play a rôle in direct numerical simulation of
the magnetohydrodynamic turbulence.

In Appendix B we analyse the structure of the corresponding family of solutions



Magnetic flux tube with a central vortex 133

of (4.1) when λ 6= 0. These cannot be written in closed form, rather they are given as
power series in w which makes it difficult to analyse their asymptotic behaviour for
w →∞. Rather unexpectedly, they shed light on the nature of the expansion (2.1).

When λ = 0 all except one solution of (4.4) have non-analytic spiral behaviour
near the origin. The physically acceptable one (satisfying (1.17)) is the only exception.
When λ is perturbed away from zero there are, in principle, two possible ways in which
the family of solutions can be modified. Either the solution satisfying (1.17) is slightly
changed, but is still analytic at r = 0 and thus exceptional, or all solutions are ‘mixed’
together and the one satisfying (1.17) acquires a non-analytic spiral component.

We will now show the latter to be true by deriving an expansion in powers of λ:

B(w, θ̂) = B0(w) + λB1(w, θ̂) + λ2B2(w, θ̂) + . . . . (4.7)

Clearly

B0 = e−w, (4.8)

and the first-order term B1 can be written as

B1(w, θ̂) = Re(H(w)eiθ̂), (4.9)

where the complex function H(w) satisfies the following inhomogeneous linear equa-
tion:

w2H ′′ + w(w + 1)H ′ + [w − (1 + iσ)]H = w2e−w. (4.10)

Solutions of the homogeneous equation are

H1(w) = wαe−wM(α, 2α+ 1, w), H2(w) = wαe−wU(α, 2α+ 1, w), (4.11)

where α = δ − 1 = (1 + iσ)1/2 and M and U are Kummer’s functions (Abramovitz &
Stegun 1965, §13.1). H1(w) and H2(w) have the following series expansions convergent
for all values of w:

H1(w) = wα
∞∑
n=0

Cn
αw

n, H2(w) = C+w
α

∞∑
n=0

Cn
αw

n − C−w−α
∞∑
n=0

Cn
−αw

n, (4.12)

with

Cn
α =

Γ (2α+ 1)

Γ (α)

n∑
k=0

(−1)n−k

k!(n− k)!
Γ (α+ k)

Γ (2α+ k + 1)
, (4.13a)

C± = π [sin π(2α+ 1)Γ (∓α)Γ (±2α+ 1)]−1 = ±Γ (∓2α)/Γ (∓α) . (4.13b)

The solutions have the following asymptotic expansions for large w:

H1(w) ∼ Γ (2α+ 1)

Γ (α)
w−1

(
S−1∑
n=0

Rnw
−n + O(w−S )

)

+
Γ (2α+ 1)

Γ (α+ 1)
eiπαe−w

(
R−1∑
n=0

Anw
−n + O(w−R)

)
, (4.14)

H2(w) ∼ e−w

(
R−1∑
n=0

Anw
−n + O(w−R)

)
, (4.15)

where

An =
Γ (n+ α)Γ (n− α)

Γ (α)Γ (−α)
(−1)n

n!
, Rn = (−1)n(n+ 1)α−2An+1. (4.16)
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By means of a Green’s function, we construct the unique solution of (4.10) which is
finite at w = 0 and falls off exponentially when w →∞:

H(w) = − Γ (α)

Γ (2α+ 1)

(
H2(w)

∫ w

0

ξH1(ξ) dξ +H1(w)

∫ ∞
w

ξH2(ξ) dξ

)
. (4.17)

The series expansion can be obtained from (4.12):

H(w) = w2

∞∑
n=0

Wn
α w

n − Ic(α)wα
∞∑
n=0

Cn
αw

n, (4.18)

where

Wn
α = − 1

2α

n∑
k=0

Ck
αC

n−k
−α
[
(k + α+ 2)−1 − (n− k − α+ 2)−1

]
,

Ic(α) =
Γ (α)

Γ (2α+ 1)
lim
A→0

(∫ ∞
A

ξH2(ξ) dξ − C−A2−α
∞∑
n=0

Cn
−α(n− α+ 2)−1An

)
.

The expression in brackets becomes independent of A when A→ 0, so the limit exists
and Ic(α) is finite. When Re(α) < 2 we have (Gradshtein & Ryzhik 1994, §7.621.6)

Ic(α) =
Γ (α)

Γ (2α+ 1)

∫ ∞
0

ξH2(ξ) dξ =
Γ (α)Γ (2 + α)Γ (2− α)

Γ (2α+ 1)
6= 0. (4.19)

Hence the solution contains a non-analytic component (at least when Re(α) < 2). All

orders B1, B2, . . . of the expansion (4.7) include terms proportional to ei2θ , but B1

dominates as r → 0. Hence, for small r we have (see (3.1), (4.9))

b1(r) ≈ 1
2
H( 1

4
r2). (4.20)

In figure 5 we compare 2bR1 (r) computed from the system (3.3) with HR obtained
from (4.17) and find excellent agreement (over the whole range 10−5 < r < 10),
which proves that the accumulating zeros of bR1 are not the result of imperfect
computations. It follows that the boundary conditions (3.4) for bn(r) derived from
the high-Rm expansion (2.1) are in fact incorrect, but they have negligible influence
on the numerical solution. The expansion (2.1) misses the non-analytic part of the

solution because it is proportional to ( 1
2
r)2α and Re(α) ∼ ε−1/2

m for small εm, so for any
fixed r < 2 the non-analytic term disappears in the limit εm → 0.

The inner contours of B1 are logarithmic spirals and those of B0 + λB1 have
elliptical shape, but the orientation continuously changes when r → 0. The axes of
the ellipses lie on a logarithmic spiral, so they do not have definite orientation as
r → 0.

Working out the asymptotic series for H(w) when w → ∞ is straightforward but
tedious. The result is

H(w) ∼ −we−w + iσ lnw e−w
∑
n=0

Anw
−n − e−w

∑
n=0

Vnw
−n, (4.21)

where Vn can be calculated from (4.4) and (4.5). The leading term of B1 is therefore

B1 = Re(H(w)eiθ̂) ∼ −we−w cos θ̂, (4.22)

the same as in (1.17).
Comparing (4.8) and (4.22) it may seem that the expansion (4.7) is valid only when
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λw . 1. In Appendix B we argue that (4.7) is in fact a convergent series for all values
of λ and any fixed r, as is the Taylor series (in powers of λ) of the matching outer
solution (1.17).Thus we have obtained a uniformly valid solution of (1.14) satisfying
(1.17).

In Appendix B, we also explain the difference between (2.1) and (4.7) in greater
detail. We find an analytic (in r) solution which is approximated by (2.1) and a family
of non-analytic solutions, analogous to (4.4), which must be added to make a unique
solution satisfying (1.17). The expansion (4.7) approximates this unique solution.

In practice convergence of (4.7) is not a useful property. When w is large many
terms are needed to obtain a reasonable approximation. It is possible to calculate
higher orders, but the results become increasingly more difficult to analyse. Hence,
we are rather interested in the region of the (λ, εm)-space where just the first order,
B0 + λB1, is a good approximation. The condition is |λB1| � |B0| which means
r � 2λ−1/2 (see (4.8), (4.21)). The approximation will be uniform, provided the radius
above which the outer solution is valid, i.e. r ∼ (πεm(1 − λ))−1/2 (see 1.18), is much
smaller than 2λ−1/2. We obtain the condition for B0 +λB1 to be a good approximation
in the entire plane:

λ� 4πεm
1 + 4πεm

< 1 . (4.23)

We may conclude that the expansion (4.7), although convergent for all values of λ, is
useful only when λ is small.

When λ > 1 we still have a solution, but the matching outer solution (1.17) is
unphysical. In fact the problem has no localized steady solution. The streamlines
of the flow projected onto the (x, y)-plane have a separatrix and the magnetic flux
continuously ‘leaks’ across the separatrix and is advected away from the origin in a
process similar to vortex stripping (Legras & Dritschel 1993). Due to its uniformity
in r the λ-expansion shows clearly the disappearance of the steady solution for λ > 1.
It is not the case with the asymptotic theory of §2.

In an interesting way the expansion (4.7) leads to conclusions about convergence
of (2.1). From (4.18) we notice that H(w) regarded as function of Rm has singularities
in the plane of complex Rm where the denominators of the coefficients Wn

α have zeros.
They are all located on the imaginary axis and their position is given by

j − α+ 2 = 0; j = 0, 1, 2, . . . , (4.24)

or in terms of Rm,

Rm = −i4π(j2 + 4j + 3). (4.25)

The singularities extend to infinity, i.e. there are singularities with arbitrary large
absolute value. Hence, the expansion of the function H(w) in powers of εm = Rm

−1

is an asymptotic series with zero radius of convergence and the same applies to the
expansion (2.1).

The singularity which is closest to the origin in the plane of complex Rm corresponds
to j = 0 or Rm = −12iπ. When Rm � 1 a solution to (1.14)–(1.17) can be sought
in the form of a series in powers of Rm. Such series would have finite radius of
convergence R0

m determined by the nearest singularity. At O(λ) we obtain an upper
bound R0

m = 12π, but higher orders bring more singularities. In Appendix B we argue
that the singularities have an accumulation point at Rm = −8iπ, thus giving R0

m = 8π.
A low-Reynolds-number theory of this kind was derived by Robinson & Saffman

(1984) for the stretched vortex problem. They found no evidence of the radius of
convergence being finite. The existence of singularities and their location is an open
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problem. It is possible that they are a consequence of the singular flow due to a
point vortex in our present problem and that they do not appear in the problem
considered by Robinson & Saffman. However, a more likely explanation is that their
existence was obscured by the double expansion both in Reynolds number and in the
parameter λ.

5. Summary
In this paper we have analysed a rectilinear magnetic sinew strained by non-

axisymmetric irrotational ambient flow. A large-Rm expansion was developed by
Bajer (1995) for two regimes: RΓ � 1, Pm & 1; and Pm � 1. The value of Pm in the
solar convection zone varies from 10−5 at the base of the photosphere to 102 deeper
down (Priest 1982, §1.3.1), so both regimes are of potential interest.

Here we considered in detail the regime when Pm = Rm/RΓ � 1 The vortex was
approximated by a line vortex which corresponds to taking the limit Pm → 0 and
neglecting non-axisymmetric terms in the multipole expansion of the velocity.

The expansion (2.1) does not match the linear outer solution. In order to bridge
the gap between the two we calculated numerically a uniformly valid solution. When
εm exceeds a certain threshold value the computed asymptotic behaviour as r → 0
of the higher Fourier modes differs essentially from that predicted by the high-Rm
expansion. They have an infinite number of zeros accumulating at r = 0, a signature
of spiral behaviour.

The main result of the paper is the proof that the computations are quantitatively
correct and the high-Rm expansion has a rather subtle deficiency, difficult to predict
in advance, which becomes prominent when Rm is below a certain threshold. The first
indication came from the analysis of the severely truncated system including only
two Fourier modes. It reproduced the computational results and gave an accurate
threshold value Rm ≈ 87 (corresponding to εm = 0.01148), but the solutions had
wrong behaviour for r →∞. In a special case, λ = 0, we have found an infinite family
(4.4) of solutions which are oscillatory near the origin, but they are all excluded by
the boundary condition (1.17).

The decisive argument showing that this is not the case when λ > 0 came from the
expansion in powers of λ which yielded a solution valid uniformly in r and satisfying
the boundary condition (1.17). The solution validates the numerical results and reveals
a non-analytic spiral part which was missing from the large-Rm expansion (2.1). This
spiral ingredient is present however large Rm may be, but it becomes weaker as Rm
increases relative to the non-oscillatory ingredient.

It is difficult to carry out the procedure to orders higher than O(λ), so its practical
use is limited to small values of λ, but it reveals the nature of the uniformly valid
solution. It appears to be a combination of solutions BN , analogous to (4.4), the
details of which are given in Appendix B. When expanded in powers of εm these
solutions yield divergent asymptotic series. The series corresponding to B0 appears
to be identical with (2.1).

The λ-expansion, together with the matching outer solution (1.17), provide a
complete solution to our problem. It shows that the spiral component is indeed
present in the steady state. This is different from the unsteady algebraic spirals
continuously developing in two-dimensional (Gilbert 1988) and three-dimensional
(Lundgren 1982) turbulence.

We expect the magnetic sinews considered here to be prominent features in any
physical situation where the magnetic field is weak and passive enough not to prevent
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the formation of the coherent vortices. By analogy with the small-scale structures of
turbulence such magnetic sinews are likely to feature in weak-field MHD turbulence.
Numerical simulations of Brandenburg and others (see Brandenburg 1994) show
alignment of B and ω in some regions and magnetic flux tubes are seen (Brandenburg,
Procaccia & Segel 1995), but the magnetic sinews still remain to be properly identified.

We thank Andrew Gilbert and Steve Tobias for helpful comments. This work was
supported by PPARC grant no J27974.

Appendix A. Truncated system
Here we derive the equation (3.12) and analyse the asymptotic behaviour of its

solutions for r → 0 as well as r →∞.
Let us consider the lowest non-trivial truncation of (3.3) retaining only b0 and b1.

Using the variable w = 1
4
r2 we obtain two equations:

wb̈0 + (w + 1)ḃ0 + b0 + λ(bR1 + wḃR1 ) = 0, (A 1a)

wb̈1 + (w + 1)ḃ1 + (1− (1 + iσ)w−1)b1 + 1
2
λwḃ0 = 0. (A 1b)

We integrate (A 1a) once, assuming b0 to be finite at w = 0, and write separately the
real and imaginary parts of (A 1b),

ḃ0 + b0 + λbR1 = 0, (A 2a)

wb̈I1 + (w + 1)ḃI1 + (1− w−1)bI1 − σw−1bR1 = 0, (A 2b)

wb̈R1 + (w + 1)ḃR1 + (1− w−1)bR1 + σw−1bI1 + 1
2
λwḃ0 = 0. (A 2c)

From (A 2a) we have bR1 = −λ−1(b0 + ḃ0) and then (A 2c) gives bI1 in terms of b0 and
its derivatives. Substituting for bR1 and bI1 in (A 2b) we obtain equation (3.12).

We look for a series solution of (3.12),

b0(w) = wδ
∞∑
n=0

Anw
n, (A 3)

and obtain two solutions finite at w = 0, (3.14a) and (3.14c). Then the corresponding
functions b1(w) can easily be calculated from (A 1b).

The solution (3.14c, d) has b1(w) bigger than b0(w) as w → 0, contrary to the
assumption underlying the truncated system. However, the general solution of (3.12)
is a combination of (3.14a, b) and (3.14c, d), so it has the correct ordering, i.e.
b1/b0 → 0 as w → 0.

In figure 6(a) we show the inner contours of the solution (3.14c, d) for εm = 0.2, as
given by

Re
(
wδ−1ei2θ

)
= wδ

R−1 sin
(
δI lnw + 2(θ − θ0)

)
= const, (A 4)

where θ0 is an arbitrary phase. The contours are ‘tongues’ divided by four separatrices
which are logarithmic spirals given by

θ − θ0 = − 1
2
δI lnw +Ψ, Ψ = 0, 1

2
π, π, 3

2
π. (A 5)

In figure 6(b) we show the inner contours of the sum of both solutions (3.14). Any
linear combination can be reduced to such a sum by an appropriate scaling of w. The
contours are given by

w + Re
(
wδ−1ei2θ

)
= wδ

R−1

sin
(
δI lnw + 2(θ − θ0)

)
= const. (A 6)
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Figure 6. Contours of the leading term of the solution (3.13). (a) Solution (3.13c, d) for εm = 0.2.
The radial coordinate is stretched by a transformation w̃ → w̃3 to emphasize the spiral structure;
(b) linear combination of both solutions (3.13) for εm = 0.015. Dashed lines mark the separatrices.

Near the origin they are closed quasi-elliptical curves. The endpoints of the axes of
the elipses lie on a logarithmic spiral

δI lnw + 2(θ − θ0) = π/2, (A 7)

so the contours do not have definite orientation in the limit w → 0 as they had in the
solution (2.4)–(2.8).

The two solutions (3.14) have finite flux, energy and dissipation for small r, so they
are physically acceptable near the origin. Systematic analysis of (3.12) (see Ince 1956,
§§17.5–6, 18.21) shows that there are five solutions with the following asymptotic
behaviour for large w:

w−2, w−2/(2−λ2), w−2 exp(−w), w±λ/2(
√

2∓λ) exp[(−1± λ/
√

2)w]. (A 8)

None of these matches the outer solution (1.17). Hence, the w → ∞ asymptotic
behaviour will be modified as the truncation order is increased and thus the asymptotic
behaviour as w → 0 could be modified as well. However, in §4 we have shown that
the non-analytic spiral part of the solution remains.

Appendix B. Expansion in powers of r
We seek solutions of (4.1) in the form of a series in powers of w = 1

4
r2,

B(w, θ̂) = wβ
∞∑
n=0

Bn(θ̂)wn. (B 1)

Both β and Bn are complex numbers, so taking the real part of the right-hand side
of the equation is implicitly understood. Substituting in (4.1) we obtain a differential
recurrence relation

B′′n − σB′n + (n+ β)2Bn = λ sin θ̂ B′n−1 − (n+ β)Bn−1 − λ(n+ β − 1) cos θ̂ Bn−1. (B 2)

When n = 0 this is an indicial equation

B′′0 − σB′0 + β2B0 = 0, B0(θ̂ + 4π) = B0(θ̂), (B 3)
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which gives a family of solutions for the index β,

β = βN = 1
2
N
(
1 + 2iσ/N

)1/2
, (B 4a)

B0 = BN0 = const× eiNθ̂/2; N = 0, 1, 1, . . . . (B 4b)

We can now solve (B 2) by taking

BNn (θ̂) =

n∑
k=−n

bNn,k exp[i(k + 1
2
N)θ̂], (B 5)

and obtain a recurrence relation for the coefficients bNn,k ,[
(n+ βN)2 − ( 1

2
N + k)2 − iσ( 1

2
N + k)

]
bNn,k

= 1
2
λ[( 1

2
N+k)− (n+βN)]bNn−1,k−1− (n+βN)bNn−1,k− 1

2
λ[( 1

2
N + k)+(n+βN)]bNn−1,k+1.

(B 6)

Thus we have a family of solutions,

BN(w, θ̂) = wβN
∞∑
n=0

[
n∑

k=−n

bNn,k exp(i( 1
2
N + k)θ̂)

]
wn, (B 7)

where bN0,0 are arbitrary and bNn,k are given by (B 6).

The contours of the (real part) of BN near the origin are logarithmic spirals (except

when N = 0). In particular, in B2(w, θ̂) we find the same behaviour we had in the
truncated system. The solution N = 0 is real and, up to a constant factor, it takes the
form:

B0(r, θ) = 1− 1
4
r2 +

(
3λ

9 + σ2
cos 2θ + 1

2
− σλ

9 + σ2
sin 2θ

)
1
16
r4 . . . . (B 8)

When we expand the coefficients of r4 in powers of εm we find that for small εm (B 8)
is the same as the expansion (2.1). We will show later that (B 8) is a convergent series
at least when

r <
(
π(λ+ 1

2
)εm
)−1/2

. (B 9)

Hence, we have a solution of (1.14) valid for any value of εm and convergent for

r . ε1/2
m which seems to be the same as (2.1) when εm is small.

From (B 8) we can see that B0 regarded as a function of εm has a singularity at
σ = ±3i, or εm = ±(12πi)−1. From the recursion relation (B 6) we can easily calculate
all singularities of B0. First we notice that b0

n,n = b0
n,−n = 0. Second, the coefficients

b0
n,k have factors

(n2 − k2 − iσk)−1, −n+ 1 6 k 6 n− 1 , (B 10)

so they have singularities at

σ = ±i(n2 − k2)/k , k = ±1,±2, . . . ,±(n− 1) . (B 11)

These singularities lie outside a circle |σ| = 2 on which they have an accumulation
point at σ = ±2i, but they extend to infinity, as their absolute value has no upper
bound. It means that the expansion of B0 in powers of εm, apparently identical with
(2.1), is an asymptotic series with zero radius of convergence. The fact that the disc
|σ| 6 2 contains no singularities tells us that a low -Rm expansion of B0, i.e. one in
powers of Rm, converges for Rm < 8π.
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The λ-expansion of §4 shows that the solution of (1.14) satisfying (1.17) is a
combination of the series solutions BN(w, θ) with different N. The O(λ) term reveals
B0(w, θ) and B2(w, θ). Higher orders in λ presumably bring in solutions with higher
N. All the series solutions are analytical functions of λ, so we may expect their
combination to be analytical too. Hence, the series (4.7) is convergent for all values
of λ.

The solution B0 determines the shape of the inner contours of B(r, θ), provided
Re(β2) > 2 which means σ > 4

√
3 or εm < 0.011 . . . . Equation (B 8) tells us that these

contours have quasi-elliptical shape inclined at an angle α for which we obtain an
explicit formula:

tan 2α = − 1
6
σ = −(24πεm)−1. (B 12)

Clearly α→ 45◦ as εm → 0, as predicted by the asymptotic expansion (2.1).
Finally we derive the estimate (B 9) for the radius of convergence of (B 8). When

N = 0 the recurrence relation (B 6) gives an inequality:

|bn,k| 6
∣∣∣∣ λ(k − n)
n2 − k2 − iσk

∣∣∣∣ |bn−1,k−1|+
∣∣∣ n

n2 − k2 − iσk

∣∣∣ |bn−1,k|+
∣∣∣∣ λ(k + n)

n2 − k2 − iσk

∣∣∣∣ |bn−1,k+1| ,

(B 13)
where, to simplify notation, we drop the superscript 0. Now we take a sum over k,

Sn =

n∑
k=−n

|bn,k| 6
n−1∑

k=−n+1

(
| 1

2
λ(k + 1− n)|

|n2 − (k + 1)2 − iσ(k + 1)| +
n

|n2 − k2 − iσk|

+
| 1

2
λ(k − 1 + n)|

|n2 − (k − 1)2 + iσ(k − 1)|

)
|bn−1,k| , (B 14)

and use simple estimates,

| 1
2
λ(k ± 1∓ n)| 6 λn for n > 0 , (B 15a)

|n2 − k2 − iσk| > nσ for n > 1
2
(1 + σ2) , (B 15b)

where −n 6 k 6 n. Hence, we have

Sn 6
2λ+ 1

σ
Sn−1 for n > 1

2
(1 + σ2). (B 16)

This implies convergence of (B 7) when w < σ/(2λ + 1) which is the lower bound
(B 9).

Similar analysis of convergence can be carried out for other series solutions BN

with N > 0. The lower bounds for the radii of convergence are

RN > 2|2βN −N − iσ|1/2(2λ+ 1)1/2. (B 17)

Having only the lower bounds we cannot tell whether the series are convergent for
large r. We have analysed them using Domb–Sykes plots (Hinch 1991, p. 145). They
seem to converge for all values of r, but their asymptotic behaviour could not be
confidently determined.

However, each series solution (B 7) provides accurate conditions for all Fourier
modes as r → 0, so the system (3.3) can be solved numerically as an initial value
problem. We show a sample of the results for N = 2 in figure 7. Such a solution is
not ‘contaminated’ by any outer boundary condition. It shows that for large r the
solutions (B 7) have an algebraic behaviour,

B(r, θ) ∼ r−p(θ). (B 18)
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Figure 7. Plots of ln(B2(w, θ = 0)) versus lnw obtained by solving an initial value problem for
(3.3). (a ) λ = 0, εm = 0.01, dashed line corresponds to B2(w, 0) ∼ w−1; (b) λ = 0.1, εm = 0.1, dashed
line corresponds to B2(w, 0) ∼ w−0.9.

When λ = 0 we obtain p(θ) = 1 (see figure 7a), in agreement with (4.6b). When λ > 0
we find p(θ) < 1 for some values of θ (figure 7b), so the solutions (B 7) have sectors of
infinite flux. The physically acceptable solution of (4.1) is a combination of the series
solutions (B 7). The coefficients of this combination can, in principle, be determined
from the λ-expansion.
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